A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles.
نویسندگان
چکیده
Much attention is currently being devoted to questions of protein and RNA tertiary structures and to the quaternary arrangement of the individual macromolecules in ribonucleoprotein (RNP) particles. In this article we describe two complementary strategies that allow the identification of RNA-protein contact sites in assembled, nonlabeled RNP particles after UV crosslinking. The first combines immunoprecipitation of UV-irradiated RNP particles under mildly denaturing conditions followed by primer-extension analysis of the crosslinked (and thus coprecipitated) RNA. The second involves the purification of crosslinked peptide-oligonucleotide from RNP particles and the subsequent analysis of the crosslinked peptide and RNA by Edman degradation and matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), respectively. Although the first approach provides a rapid method for the exact identification of RNA-protein contact sites in purified nonlabeled RNP particles, the latter adds valuable information about potential RNA binding domains within proteins and, thus, about the arrangement of these proteins within the quaternary structures of complex RNP assemblies. Recently, we applied both these strategies successfully to native purified spliceosomal RNP. These methods may be generally applicable to the analysis of RNP complexes, especially as they avoid labeling and reconstitution, both of which risk introducing artifacts.
منابع مشابه
A general approach for identification of RNA-protein cross-linking sites within native human spliceosomal small nuclear ribonucleoproteins (snRNPs). Analysis of RNA-protein contacts in native U1 and U4/U6.U5 snRNPs.
We describe a novel approach to identify RNA-protein cross-linking sites within native small nuclear ribonucleoprotein (snRNP) particles from HeLa cells. It combines immunoprecipitation of the UV-irradiated particles under semi-denaturing conditions with primer extension analysis of the cross-linked RNA moiety. In a feasibility study, we initially identified the exact cross-linking sites of the...
متن کاملComplete MALDI-ToF MS analysis of cross-linked peptide-RNA oligonucleotides derived from nonlabeled UV-irradiated ribonucleoprotein particles.
Protein-RNA cross-linking combined with mass spectrometry is a powerful tool to elucidate hitherto non-characterized protein-RNA contacts in ribonucleoprotein particles, as, for example, within spliceosomes. Here, we describe an improved methodology for the sequence analysis of purified peptide-RNA oligonucleotide cross-links that is based solely on MALDI-ToF mass spectrometry. The utility of t...
متن کاملDifferential 3' splice site recognition of SMN1 and SMN2 transcripts by U2AF and U2 snRNP.
Spinal Muscular atrophy is a prevalent genetic disease caused by mutation of the SMN1 gene, which encodes the SMN protein involved in assembly of small nuclear ribonucleoprotein (snRNP) complexes. A paralog of the gene, SMN2, cannot provide adequate levels of functional SMN because exon 7 is skipped in a significant fraction of the mature transcripts. A C to T transition located at position 6 o...
متن کاملImproved identification of enriched peptide–RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry
Direct UV cross-linking combined with mass spectrometry (MS) is a powerful tool to identify hitherto non-characterized protein-RNA contact sites in native ribonucleoprotein particles (RNPs) such as the spliceosome. Identification of contact sites after cross-linking is restricted by: (i) the relatively low cross-linking yield and (ii) the amount of starting material available for cross-linking ...
متن کاملCrosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L.
Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a multifunctional RNA-binding protein that is involved in many different processes, such as regulation of transcription, translation, and RNA stability. We have previously characterized hnRNP L as a global regulator of alternative splicing, binding to CA-repeat, and CA-rich RNA elements. Interestingly, hnRNP L can both activate and repress ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2002